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Determining trend and implementing detrending operations are
important steps in data analysis. Yet there is no precise definition
of ‘‘trend’’ nor any logical algorithm for extracting it. As a result,
various ad hoc extrinsic methods have been used to determine
trend and to facilitate a detrending operation. In this article, a
simple and logical definition of trend is given for any nonlinear and
nonstationary time series as an intrinsically determined monotonic
function within a certain temporal span (most often that of the
data span), or a function in which there can be at most one
extremum within that temporal span. Being intrinsic, the method
to derive the trend has to be adaptive. This definition of trend also
presumes the existence of a natural time scale. All these require-
ments suggest the Empirical Mode Decomposition (EMD) method
as the logical choice of algorithm for extracting various trends from
a data set. Once the trend is determined, the corresponding
detrending operation can be implemented. With this definition of
trend, the variability of the data on various time scales also can be
derived naturally. Climate data are used to illustrate the determi-
nation of the intrinsic trend and natural variability.

Empirical Mode Decomposition ! global warming !
intrinsic mode function ! intrinsic trend ! trend time scale

The terms ‘‘trend’’ and ‘‘detrending’’ frequently are encoun-
tered in data analysis. In many applications, such as climatic

data analyses, the trend is one of the most critical quantities
sought. In other applications, such as in computing the corre-
lation function and in spectral analysis, it is necessary to remove
the trend from the data, a procedure known as detrending, lest
the result might be overwhelmed by the nonzero mean and the
trend terms; therefore, detrending often is a necessary step
before meaningful spectral results can be obtained. As a result,
identifying the trend and detrending the data are both of great
interest and importance in data analysis.

Because the concept of a trend in a data set seems clearly
self-evident, most data analysts take it for granted and only few
bother to examine the essence of it or to define it rigorously for
the purpose of data analysis. For example, in statistics and in
numerous scientific analyses, the trend often is taken as the
tendency over the whole data domain that presumably will
continue into the future when new observations become avail-
able. In other cases, the trend can be the residue of data after
removing the components of the data with frequency higher than
a threshold frequency (1). In a casual Internet search, for
example, there are presently more than 12 million items related
to trend and detrending. However, a rigorous and satisfactory
definition of either the trend of nonlinear nonstationary data or
the corresponding detrending operation still is lacking, which
leads to the awkward reality that the determination of trend and
detrending often are ad hoc operations. Because many of the
difficulties concerning trend stem from the lack of a proper
definition for the trend in nonlinear nonstationary data, a
definitive and quantitative study on trend and detrending is
needed.

In this article, a definition for trend is introduced, and a
corresponding algorithm for finding intrinsically the trend and
implementing the detrending also is presented. Because the
detrended data define a more meaningful variability associated
with a particular time scale of the data, the variability of the data
also will be examined. It should be noted here that the definition
of trend and the algorithm for detrending in this study are quite
general and can be applied to any data from nonstationary and
nonlinear processes. The goal, however, is not for prediction but
for analysis. The assumption is that the predictive models have
to be process-based, not data-driven. The analysis aspect em-
phasizes the discovery and understanding of the underlying
processes to provide a basis for building predictive models.
Therefore, the emphasis of this article differs from those con-
tained in the works by two pioneers of financial data analysis,
R. F. Engle and C. W. J. Granger, whose work covers similar
problems in determining trend and variability or volatility as
used in financial communities (2). However, their emphasis is on
models for market prediction, a daunting challenge for a patently
nonstationary process. As a justification, they regard the finan-
cial market as a special Auto-Regressive Integrated Moving
Average (ARIMA) process, controlled by a series of shocks and
relaxations. They clearly pointed out the limitation of their
works, that not all nonstationary data satisfy their special
assumptions. Indeed, the vast majority of real-world data are of
a nonstationary and nonlinear nature and do not fit the ARIMA
prediction models at all.

This article is arranged in the following way: it begins by
discussing the drawbacks of subjectively determined but widely
used definitions of trend; clarifying some concepts on the
essence of the trend of nonlinear nonstationary time series; and
then providing a definition of intrinsically determined trend and
a method for detrending. This definition of the trend will be
applied to the annual global surface air temperature anomaly
(GSTA) (with respect to the 30-year mean global surface
temperature from 1961–1990) time series. Some discussion and
conclusions also will be provided. A brief description of the
method also will be presented.

A Definition of Trend
Extrinsic and Predetermined Trends. The most commonly seen
trend is the simple trend, which is a straight line fitted to the data,
and the most common detrending process usually consists of
removing a straight line best fit, yielding a zero-mean residue.

Author contributions: N.E.H. designed research; Z.W., N.E.H., S.R.L., and C.-K.P. performed
research; N.E.H. contributed new reagents/analytic tools; Z.W., N.E.H., and S.R.L. analyzed
data; and Z.W., N.E.H., S.R.L., and C.-K.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Abbreviations: EMD, Empirical Mode Decomposition; GSTA, global surface air temperature
anomaly; IMF, intrinsic mode function.
¶To whom correspondence should be addressed. E-mail: zhwu@cola.iges.org.

© 2007 by The National Academy of Sciences of the USA

www.pnas.org"cgi"doi"10.1073"pnas.0701020104 PNAS ! September 18, 2007 ! vol. 104 ! no. 38 ! 14889–14894

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

FUJITSU




Such a trend may suit well in a purely linear and stationary world.
However, the approach may be illogical and physically mean-
ingless for real-world applications such as in climatic data
analyses. In these studies, the trend often is the most important
quantity sought (3), and the linearly fitted trend makes little
sense, for the underlying mechanism is likely to be nonlinear and
nonstationary.

Another commonly used trend is the one taken as the result
of a moving mean of the data. A moving mean requires a
predetermined time scale so as to carry out the mean operation.
The predetermined time scale has little rational basis, for in
nonstationary processes the local time scale is unknown a priori.
More complicated trend extraction methods, such as regression
analysis or Fourier-based filtering, also are often based on
stationarity and linearity assumptions; therefore, one will face a
similar difficulty in justifying their usage. Even in the case in
which the trend calculated from a nonlinear regression happens
to fit the data well fortuitously, there still is no justification in
selecting a time-independent regression formula and applying it
globally for nonstationary processes. In general, various curve
fits with a priori determined functional forms are subjective, and
there is no foundation to support any contention that the
underlying mechanisms should follow the selected simplistic, or
even sophistic, functional forms, except for the cases in which
physical processes are completely known.

Intrinsic and Adaptive Trends. The definitions of trend and the
algorithms for detrending discussed above generally involve
prescribed parameters or functions that are extrinsic and sub-
jective. To overcome the aforementioned drawbacks, one must
address the problem of how to determine the trend for data sets
from nonstationary and nonlinear processes without relying on
extrinsic functional or simplifying assumptions.

Before proceeding further, several subtle, but important,
points must be considered. First, the trend of the data should be
an intrinsic property of the data; it is an integral part of the data
and also is driven by the same mechanisms or part of the same
mechanisms that generate the data. Being intrinsic requires that
the method used in defining the trend be adaptive, so that the
trend extracted is derived from and based on the data. Unfor-
tunately, most of the presently available methods define trend by
using extrinsic approaches (e.g., preselected functional forms).

Second, the trend should exist within a given data span (the
whole length, or a part, of the data) and be a property associated
with the corresponding local time scales. A trend of a certain
time scale shorter than the current data span defined this way is
not likely to be affected by any continuing addition of new data.
However, the continuing addition of new data does have effects:
it will lead to an extension of the current overall trend and even
a new overall trend of a time scale longer than the current data
span. With this idea in mind, it is easy to recognize the difficulty
of distinguishing the trend from the cycle as stated by Stock and
Watson (4): ‘‘one economist’s ‘trend’ can be another’s ‘cycle,’’’
when no local time scale is introduced. To separate the two
clearly, the trend must be limited to a curve containing at most
one extremum within the given data span.

Under the above considerations, the trend is thus defined:
The trend is an intrinsically fitted monotonic function or a

function in which there can be at most one extremum within a given
data span.

Here, ‘‘a given data span’’ could be the whole length, or a part,
of the data. Having defined the trend, detrending and the
variability can be readily defined as follows:

Detrending is the operation of removing the trend. The variability
is the residue of the data after the removal of the trend within a given
data span.

Empirical Mode Decomposition (EMD) for Determining Intrinsic Trend.
If the functional form of the trend is not preselected, the
processes of determining the trend have to be adaptive to
accommodate data from nonstationary and nonlinear processes.
As discussed above, regression, moving mean, and filtering all
are problematic in dealing with nonlinear nonstationary data.
With these considerations, only the recently developed EMD
method (1, 5–8) fits the requirements. A brief description of the
method also will be presented in the Methods.

Having presented the definitions of trend and detrending, the
adaptive approach in trend determination will be demonstrated
by using the annual GSTA data. It should be pointed out that the
reason for using the annual GSTA is that it is one of the most
widely studied climatic time series (3), and it can serve well to
illustrate the general methodology.

Determination of the Trends of Annual GSTA. Global warming has
become an extremely contentious issue that has gone far beyond
just climate science for its economical and political implications
(3, 9), especially within the last two decades. The painstakingly
assembled historical instrumental record shows clear evidence of
a warming trend over the last century. There are, however, some
unsettled arguments, which include the warming rates, the causes
of warming, and the precise trend. This article is limited to
determining trends with their associated time scales and the
corresponding warming rates by using the EMD method. These
results will be useful for understanding the variability of the
climate on various time scales. The data used here are the annual
global surface temperature anomalies analyzed by Jones et al.
(10) and posted at the web site of the Climate Research Unit,
University of East Anglia, Norwich, U.K. (www.cru.uea.ac.uk/
cru/data/temperature/), which is maintained jointly by the Cli-
mate Research Unit and the U.K. Meteorological Office Hadley
Centre. The annual GSTA is the yearly averaged deviation from
the 1961–1990 mean. The data are plotted in Fig. 1.

The data are decomposed into intrinsic mode functions
(IMFs) by using the EMD method (1, 5–8). As previously
demonstrated (7), the IMFs and the residual obtained by using
EMD are not always unique and could change as the stoppage
criterion for the sifting process changes, which makes it difficult
to confirm whether the extracted trend is ‘‘real, actual.’’ To gain
some confidence in the result, the method suggested by Huang
et al. (7) has been used. In this method, 10 different S number
stoppage criteria for the sifting process are used, and the
corresponding IMFs are compared. The details of the S number
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Fig. 1. The annual GSTA from 1856 to 2003.
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stoppage criterion, which is the consecutive numbers of sifting
for which the numbers of extrema and zero-crossing are con-
stants and have the same value, is given in Huang et al. (7). In
this study, 10 different S numbers, from 4 to 13, were selected.

All of the decompositions with their different stoppage cri-
teria gave six IMF components, indicating that the siftings were
producing quite stable results. The mean IMFs and their cor-
responding standard deviations from the 10 different sets are
shown in Fig. 2. The values of standard deviations are about one
order of magnitude smaller than that of their mean values,
indicating the robustness of the result. A statistical significance
test was performed on the IMF components, based on the a
posteriori test method proposed by Wu and Huang (8, 11). From
this test, it was found that the first four IMFs are not distin-
guishable from the corresponding IMFs of pure white noise.
However, the fifth IMF, which represents the multidecadal
variability of the data, and the reminder, which is the overall
trend, are statistically significant, indicating these two compo-
nents contain physically meaningful signals. The details of the
test can be found in the Methods and Fig. 7.

Various trends, including the linear trend, the overall adaptive
trend (the residual component C6), and the multidecadal trend (the
sum of C5 and C6), are plotted in Fig. 3. Here, the overall adaptive
trend is the trend derived by using the EMD over the whole data
span, and the multidecadal trend is the remainder after IMFs of
periods shorter than multidecades are removed from the GSTA,
which can be regarded as the union of the trends derived from
consecutive multidecadal sections of GSTA. The overall adaptive
trend is determined intrinsically and is neither linear nor quadratic.
The narrowness of the variance limit for the trend (see Fig. 2
Bottom) indicates that the trend is highly robust and reliable. In Fig.
3, a comparison among the different fittings also is illustrated. The
linear trend is no doubt the poorest one, the intrinsically deter-
mined overall adaptive trend is a major improvement over the linear
fitting, and the multidecadal trend catches essentially the meaning-
ful variability and change associated with the annual GSTA,
showing even greater improvement.

The variability of the annual GSTA with respect to various
trends is given in Fig. 4. From visual inspection, the variability
with respect to the linear trend contains a dominant centennial
time scale (the time scale of the data length) as well as a
multidecadal time scale. However, the variability with respect to
the overall adaptive trend, showing mostly multidecadal f luctu-

ating patterns, indicates cyclical variability on a shorter time
scale than that of the overall adaptive trend. The variability with
respect to the multidecadal trend is not distinguishable from that
of white noise.

The change rates of various trends, defined as the temporal
derivatives of various trends, are plotted in Fig. 5. The linear
trend gives a warming value of 0.5 K per century. However, if
greenhouse gases are indeed the causes of warming (3), such a
constant warming rate certainly does not reflect the acceleration
of warming caused by the accumulation of greenhouse gases. The
change rate of the overall adaptive trends seems to reflect the
acceleration of warming much better: it was close to no warming
in the mid-19th century and is !0.8 K per century currently. This
tendency was qualitatively mentioned earlier (3), but its quan-
titative characteristics would be totally missed if a linear trend
were adopted. For the multidecadal trend, the rate of change is
much higher compared with the overall adaptive trend. From
Fig. 5, it can be seen that there were three periods when the rates
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Fig. 2. Means (black lines) and standard deviations (gray lines) of IMFs of 10
different siftings corresponding to S numbers from 4 to 13.
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Fig. 3. The annual GSTA (thin black line) and its trends (linear trend, thin
gray line; overall adaptive trend, thick black line; and multidecadal trend,
thick gray line).
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Fig. 4. Anomalies with respect to various trends (linear trend, thin gray line;
overall adaptive trend, thick black line; and multidecadal trend, thick gray
line).
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of change were higher (1860s, 1930s, and 1980s), which are
interspersed with brief periods of temperature decreases.

As was discussed earlier, a local trend is a time-scale-
associated quantity. The time scale of the multidecadal trend
based on the generalized zero-crossing method (12) (see the
Methods for more detail), which determines the local time scale
based on the information of neighboring extrema and zero-
crossing, is plotted in Fig. 6. The time scale certainly is not a
constant, but it varies from 50 to 80 years and has a mean value
slightly higher than 65 years.

Judging from the statistical significance test, we decided not to
pursue the trend to any finer scale, because the IMF with a time
scale "65 years may not significantly differ from white noise.
The reliable trends are those of longer time scales. Significantly,
other than the familiar overall global warming trend, the 65-year
cycle really stands out. The origin of this 65-year time scale is not

completely clear because there is no known external force that
varies with such a time scale.

Finally, it is noted that the global temperature anomalies with
respect to the sum of the overall EMD trend and the multidec-
adal variability appear to be quite stationary in the whole data
span, indicating that the higher frequency part of the record in
recent years is not more variable than that in the 1800s. The
extreme temperature records in the 1990s stand out mainly
because the general global warming trend over the whole data
length coincides with the warming phase of the 65-year cycle.

Conclusions
In this article, we proposed a definition for trend of nonstation-
ary nonlinear data, which in turn made it possible to perform a
detrending operation on the data and to determine the variabil-
ity about the trend line. The key to making this definition of
trend feasible is the realization that the trend is one of the many
local properties of the data; therefore, it has to be associated with
a time scale. Without reference to a time scale, the trend will be
confusingly mingled with local cycles.

Other general methods such as least-squares or maximum-
likelihood fits might fit the data well, but they are extrinsic.
Although some of the extrinsic functions used in fitting data,
such as exponential, power law, and hyperbolic baselines, are
nonlinear models, there is no guarantee that the externally
determined nonlinearity characteristics correspond to those
embedded in the mechanisms generating the data. As most of the
underlying mechanisms of either natural or human-induced
variability are only incompletely known, it is almost impossible
to decide which of the myriad functions to choose so as to render
the best extrinsically determined trend. Therefore, to have a
meaningful trend, the method has to be adaptive (so as to let
nature speak for itself). The EMD method fits these require-
ments well. This work has demonstrated an application of the
present approach to annual GSTA. It has been shown that this
approach not only defines the trend but also reveals some
intriguing intrinsic properties of the data. Experience with
various real-world data indicates that the variance of the de-
trended data with respect to any known extrinsically determined
trend is larger than that corresponding to the intrinsically fitted
variance. However, a rigorous proof of this statement still is
under investigation.

Methods
Contrary to almost all of the previous decomposing methods,
EMD is empirical, intuitive, direct, and adaptive, without re-
quiring any predetermined basis functions (5–7). The decom-
position is designed to seek the different intrinsic modes of
oscillations in any data based on the principle of local scale
separation. An intrinsic mode of oscillation is called an IMF
when it satisfies: (i) in the whole data set, the number of extrema
and the number of zero-crossings must either equal or differ at
most by one and (ii) at any point, the mean value of the envelope
defined by the local maxima and the envelope defined by the
local minima is zero. In this way, an IMF is a pure oscillatory
mode that bears amplitude and frequency modulations.

The IMFs are extracted level by level: first the highest-
frequency local oscillations riding on the corresponding lower-
frequency part of the data are extracted; then the next level
highest-frequency local oscillations of the residual of the data are
extracted; and so on until no complete oscillation can be
identified in the residual. In practice, the EMD is implemented
through a sifting process that uses only local extrema. Suppose
rj#1 is the remainder of data x(t) after j # 1 IMFs are extracted,
then the procedure for extracting the jth IMF is as follows:
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1. Identify all of the local extrema (the combination of both
maxima and minima) and connect all these local maxima
(minima) with a cubic spline as the upper (lower) envelope;

2. Obtain the first component h by taking the difference be-
tween the data and the local mean of the two envelopes (the
average of the upper and lower envelopes at any temporal
location); and

3. Treat h as the data and repeat steps 1 and 2 as many times as
is required until the envelopes are symmetric with respect to
zero mean under certain criteria. The final h is designated as
cj, the jth IMF.

A complete sifting process stops when the residue, rn, becomes
a monotonic function from which no more IMF can be extracted.
The total number of IMFs of a data set is close to log2N, with N
being the number of total data points. In short, the EMD is an
adaptive method that will decompose data, x(t), in terms of
IMFs, cj, and a residual component, rn, i.e.,

x$t% ! #
j&1

n

cj " rn. [1]

In Eq. 1, the residual component, rn, could be a constant, a
monotonic function, or a function that contains only a single
extrema, from which no more oscillatory IMFs can be extracted.

Recent studies by Flandrin et al. (13) and Wu and Huang (8,
11) established that the EMD is equivalent to a dyadic filter
bank$ and to an adaptive wavelet (1). Being adaptive, the EMD
has avoided the shortcomings of using any a priori defined
wavelet basis and also has avoided the spurious harmonics that
would certainly have resulted. The components of the EMD
usually are physically meaningful because the characteristic
scales are based on and derived from the data (1, 5–8, 11, 14).

From the above description of the EMD, it is clear that the
definition of the residual in the EMD is almost identical to the
definition of the trend when the data span in the trend definition
covers the whole data length. It is noted that there is some
similarity between the present approach to trend and variability
and the Detrended Fluctuation Analysis (DFA) proposed by
Peng et al. (15, 16). Detailed comparisons will need to be
discussed in later publications.

Statistical Significance Test of IMFs. Wu and Huang (8, 11), based
on numerical experiments on white noise with the EMD method,
found that the EMD is effectively a dyadic filter bank and that
the Fourier spectra of the IMF components all are identical and
cover the same area on a semilogarithmic period scale. They
inferred from the Central Limit Theorem that the IMF compo-
nents all are distributed normally. They further deduced that the
product of the energy density of IMF and its corresponding mean
period is a constant and that the energy density function is
#2-distributed. Based on these results, they derived the energy
density spread function of the IMF components and further
established a method to assign statistical significance (at any
given statistical confidence level) of information content for
IMF components derived from noisy data.

As for the annual GSTA data, which contains nonstationary
components such as the trend, the noise contained in the data
were estimated based on the first IMF, which is almost always a
result of noise for any well sampled data containing noise. For
convenience in displaying the results, a minor modification of the

significance criterion also was made: the upper (lower) bound is
based on three times the variance of the estimated white noise
and is selected instead of computing the bounds with a 95%
confidence interval. The results are shown in Fig. 7. The
consistency of tests performed on other cases indicates that this
modification is a reasonable one. If this criterion is adopted, the
upper bound indicates that the fifth IMF and the residue trend
both lie far above the noise characteristics represented by the
solid line; therefore, they are statistically significant.

Time Scales Associated with Intrinsic Trends. By definition, one of
the critical elements of the trend is the time scale associated with
it. As a trend is considered a local nonoscillatory function
defined for a local time scale not longer than the local full
oscillatory cycle, the upper bound of the time scale can be
determined by the zero-crossings of the longest full cycle of the
oscillations contained in the corresponding variability. With this
in mind, the generalized zero-crossing method for defining
wavelength proposed by Huang (12) can be used. In this gen-
eralized approach, the time scale is determined by the time spans
between various combinations of the critical points defined as
the union of all of the zero-crossings and extrema of an IMF.
Therefore, the most local, and also the finest resolution, of the
time scales is the distance between an extremum and the
neighboring zero-crossing, representing a quarter wave cycle.
The next choice is the time either between two consecutive
extrema (a minimum to the next maximum, for example) or
between two consecutive zero-crossings (from an up zero-
crossing to a down zero-crossing, for example), which represents
a half wave cycle. The longest, and most physical, local time scale
is the full wavelength: from one maximum (minimum) to the next
maximum (minimum) or from one up (down) zero-crossing to
the next up (down) zero-crossing. As a result, for any given time
location, there are seven possible local time scales representing
different local properties. A weighted mean and a standard
deviation can be computed from these time scales. The weighted

$A dyadic filter bank is a collection of band-pass filters that have a constant band-pass shape
(e.g., a Gaussian distribution) but with neighboring filters covering half of or double the
frequency range of any single filter in the bank. The frequency ranges of the filters can be
overlapped. For example, a simple dyadic filter bank can include filters covering frequency
windows such as 50 to 120 Hz, 100 to 240 Hz, 200 to 480 Hz, etc.
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mean is the time scale used in Fig. 6. The details of the method
are given in ref. 12.
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